Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Insects ; 15(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38392526

ABSTRACT

Thrips are economically important pests, and some species transmit plant viruses that are widely distributed and can damage vegetables and cash crops. Although few studies on thrips species have been conducted in Bangladesh, the variation and genetic diversity of thrips species remain unknown. In this study, we collected thrips samples from 16 geographical locations throughout the country and determined the nucleotide sequences of the mitochondrial cytochrome c oxidase subunit 1 (mtCOI) gene in 207 thrips individuals. Phylogenetic analysis revealed ten genera (Thrips, Haplothrips, Megalothrips, Scirtothrips, Frankliniella, Dendrothripoides, Astrothrips, Microcephalothrips, Ayyaria, and Bathrips) and 19 species of thrips to inhabit Bangladesh. Among these, ten species had not been previously reported in Bangladesh. Intraspecific genetic variation was diverse for each species. Notably, Thrips palmi was the most genetically diverse species, containing 14 haplotypes. The Mantel test revealed no correlation between genetic and geographical distances. This study revealed that thrips species are expanding their host ranges and geographical distributions, which provides valuable insights into monitoring the diversity of and control strategies for these pests.

2.
Arch Insect Biochem Physiol ; 115(1): e22066, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013610

ABSTRACT

Stilbene-based fluorescent brighteners (FBs) have been demonstrated to improve the insecticidal activities of entomopathogenic viruses; however, there is limited information regarding their effect on entomopathogenic bacteria. We conducted this study to investigate the effect of two FBs (FB 28 and FB 71) on the insecticidal activities of Bacillus thuringiensis var. kurstaki (Btk) and Lymantria dispar multiple nuclear polyhedrosis virus (LdMNPV) on Lymantria dispar asiatica. FB 28 and Btk combination at low concentration (1.6 × 102 IU/mL) increased the mortality, whereas FB 71 and Btk combination at intermediate and high concentrations (1.6 × 103 and 1.6 × 104 IU/mL) slightly reduced the mortality compared with that with Btk alone. The lethal time was also shorter with combinations of Btk and FB 28 than with FB 71. Both FB 28 and FB 71 increased the mortality in combination with LdMNPV at all concentrations (3 × 102 , 3 × 104 , and 3 × 106 polyhedral occlusion bodies/mL compared with that with LdMNPV alone. Our results suggest that FBs improve the insecticidal activities of Btk and LdMNPV, and their activities depend on their interactions with the midgut structures of the host insect species.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Nucleopolyhedroviruses , Animals , Flighted Spongy Moth Complex , Insecticides/pharmacology , Republic of Korea
3.
Arch Insect Biochem Physiol ; 113(1): e22002, 2023 May.
Article in English | MEDLINE | ID: mdl-36662511

ABSTRACT

Outbreaks of Lymantria dispar asiatica (the Asian spongy moth; Lepidoptera: Erebidae) occur sporadically, causing widespread damage to forest and fruit trees. Owing to the development of pesticide resistance and environmental contamination, biopesticides, including L. dispar multiple nucleopolyhedrovirus (LdMNPV) and Bacillus thuringiensis var. kurstaki (Btk), can significantly contribute to controlling overall larval stage of this species. Although both pathogens are highly effective at the larval stage, their effects on different instar stages have not been investigated. In this study, we analyzed the mortality and lethality in different L. dispar asiatica instars exposed to single or combined pathogen treatments. Treatments with low or medium LdMNPV concentrations induced lower mortality and had higher LT50 values at the 4th and 5th instars compared with other instars, whereas high LdMNPV treatments induced high mortality in all instars, with higher LT50 values at later instars. Treatment with Btk induced a rapid 100% mortality in all instars, with higher LT50 values for the later instars. The combination of LdMNPV and Btk delayed the killing time compared with the effects of single treatments, with the effect being more pronounced in the 1st and 5th instar stage than at other stages at low Btk concentrations. Our findings indicate that the pathogenic effects of LdMNPV and Btk on L. dispar asiatica differ according to larval stage, thereby providing novel insights into enhancing the biological control efficacy of these agents against L. dispar asiatica in the field.


Subject(s)
Bacillus thuringiensis , Moths , Nucleopolyhedroviruses , Animals , Larva
4.
Arch Insect Biochem Physiol ; 112(2): e21981, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36331499

ABSTRACT

Bemisia tabaci is a species complex consisting of various genetically different cryptic species worldwide. To understand the genetic characteristics and geographic distribution of cryptic species of B. tabaci in Asia, we conducted an extensive collection of B. tabaci samples in ten Asian countries (Bangladesh, Indonesia, Japan, Korea, Myanmar, Nepal, Philippines, Singapore, Taiwan, and Vietnam) from 2013 to 2020 and determined 56 different partial sequences of mitochondrial cytochrome oxidase subunit I (COI) DNA. In addition, information on 129 COI sequences of B. tabaci identified from 16 Asian countries was downloaded from the GenBank database. Among the total 185 COI sequences of B. tabaci, the sequence variation reached to 19.68%. In addition, there were 31 cryptic species updated from 16 countries in Asia, that is, Asia I, Asia I India, Asia II (1-13), Asia III, Asia IV, Asia V, China 1-6, MEAM (1, 2, K), MED, Australia/Indonesia, Japan (1 and 2). Further, MED cryptic species consisted of 2 clades, Q1 and Q2. This study provides updated information to understand the genetic variation and geographic diversity of B. tabaci in Asia.


Subject(s)
Hemiptera , Mitochondria , Animals , Phylogeny , Asia , China , Hemiptera/genetics , Genetic Variation
5.
Insects ; 13(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36554994

ABSTRACT

The fall armyworm Spodoptera frugiperda (J.E. Smith) is an economically important pest that recently invaded Africa and Asia; however, information regarding its biological capacity to establish itself in newly invaded environments is largely unknown. We investigated the effects of temperature on the development and survival of the invaded populations of S. frugiperda and selected mathematical models to evaluate its development in a new environment. S. frugiperda exhibited optimum survival and growth at temperatures between 28 °C and 30 °C. The lower and upper thermal thresholds for the egg-to-adult life cycle were 13.51 °C and 34.13 °C, respectively. We compared seven mathematical models and found that the Shi model was the most suitable for describing the temperature-dependent development rate of S. frugiperda. Therefore, the Shi mathematical model may be used to predict both the occurrence of particular developmental stages and the geographic distribution to implement measures for the management of S. frugiperda in agricultural fields.

6.
Arch Insect Biochem Physiol ; 111(4): e21965, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36053552

ABSTRACT

The fall armyworm (FAW) Spodoptera frugiperda is an important invasive pest in Africa and Asia. It is a polyphagous pest with at least 353 recorded host plant species, including corn. Chemical control of this pest is unsuccessful because of a developed resistance and harmful effects on the environment. Entomopathogenic fungi are potential biological control agents for FAW. In this study, the native strain of Metarhizium rileyi (KNU-Ye-1), collected from a cornfield at Yeongcheon, Korea, was identified by morphological and molecular characterization. The susceptibility of the fourth-instar larvae of FAW to the native strain M. rileyi was examined in the laboratory. The results showed that the Korean strain of M. rileyi (KNU-Ye-1) was highly virulent to FAW larvae, causing 89% mortality 7 days posttreatment. Therefore, M. rileyi (KNU-Ye-1) identified in this study is highly valuable for the biological control of FAW in the field.


Subject(s)
Metarhizium , Animals , Spodoptera/microbiology , Virulence , Larva
7.
Insects ; 12(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066149

ABSTRACT

The fall armyworm, Spodoptera frugiperda, is an important agricultural pest native to tropical and subtropical regions of the Western Hemisphere, and has invaded Africa and further spread into most countries of Asia within two years. Here, we analyzed the genetic variation of invaded populations by comparing the nucleotide sequences of two genes: the nuclear Z-chromosome linked gene triose phosphate isomerase (Tpi) and the mitochondrial gene cytochrome oxidase subunit I (COI) of 27 specimens collected in Africa (DR Congo, Tanzania, Uganda, and Zimbabwe) and Asia (Bangladesh, Korea, Nepal, and Vietnam). The results revealed that 25 specimens were from a heterogeneous hybrid (Tpi-corn strain and COI-rice strain; Tpi-C/COI-R) of the corn strain male and rice strain female, but two specimens were from a homogenous corn strain (Tpi-corn strain and COI-corn strain; Tpi-C/COI-C). The further analysis of the fourth exon and the fourth intron sequences of the Tpi gene identified at least four subgroups of the corn strain. These four genetic subgroups were identified in Africa and Asia, suggesting no significant genetic change due to the rapid migration within two years. Our study provides essential information for understanding the genetic diversity of fall armyworm in new habitats.

8.
Insects ; 11(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297314

ABSTRACT

The fall armyworm, Spodoptera frugiperda, which is native to Central and South America, has recently invaded Africa and Asia, causing serious damage to various crops. Although management to date has been largely unsuccessful, entomopathogenic nematodes (EPNs) are a potential biological control agent that could be used to control the late larval and pupal stages of S. frugiperda that dwell under the ground. Here, we compared the virulence of seven EPNs against larval and pupal stages of S. frugiperda. In a Petri dish assay, both Heterorhabditis indica and Steinernema carpocapsae were highly virulent against younger larvae, whereas S. arenarium and S. longicaudum were highly virulent against older larvae. In contrast, H. bacteriophora, Heterorhabditis sp., and S. kushidai showed low virulence against all larval stages. In soil column and pot assays, H. indica, S. carpocapsae, and S. longicaudum were highly virulent against late larval and pupal stages compared with the other EPN species. Thus, H. indica, S. carpocapsae, and S. longicaudum are recommended for the biological control of S. frugiperda. Our study provides important information of EPNs for the practical application of biological control of fall armyworm.

9.
Pest Manag Sci ; 76(7): 2347-2354, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32003105

ABSTRACT

BACKGROUND: Methyl benzoate (MB) is a small, hydrophobic organic compound isolated from the freshwater fern Salvinia molesta (Salviniales: Salviniaceae). It is used as a fragrance and flavor enhancer owing to its pleasant smell. It has also demonstrated potential as a green pesticide for various groups of insects. However, its effects on mites are yet to be studied. RESULTS: Here, we assessed the acaricidal and repellent effects of MB against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), under laboratory and greenhouse conditions. MB demonstrated concentration-dependent contact toxicity against eggs and adults of the mite. A leaf-dipping assay using 1% MB prevented the hatching of 92.7% of eggs and killed 100% of adults within 48 h of treatment. Concentration-mortality statistics were subjected to probit analysis, and the median lethal concentration (LC50 ) values for eggs and adults were 0.25% and 0.5%, respectively. Treatment with 1% MB showed the highest mortality (100%), with a median lethal time (LT50 ) estimated of 8.1 h. The efficacy of MB against adults of T. urticae on tomato plants under greenhouse conditions was 97.5% within 96 h post-treatment. Further, MB showed significant repellent activity against adult females of T. urticae, although this declined with time. Spraying with 1% MB (three times per plant) was not phytotoxic to bean, cucumber, pepper, or tomato plants. CONCLUSION: MB is highly acaricidal and repellent, but not phytotoxic, and is a promising green pesticide.


Subject(s)
Tetranychidae , Acaricides , Animals , Benzoates , Female , Insect Repellents
10.
Microb Pathog ; 142: 104069, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32061918

ABSTRACT

Bemisia tabaci is a global species complex consisting of at least 40 cryptic species. It is also a vector for at least 100 species of begomovirus, many of which cause severe crop damage. The relationship between begomoviruses and cryptic species of the B. tabaci species complex, however, remains unclear. Our previous study [13] was identified four cryptic species (Asia I, Asia II 1, Asia II 5, and Asia II 10) of B. tabaci from Bangladesh. Using those 110 whitefly samples, vector-based PCR analysis identified 8 different begomovirus species: BYVMV, BGYVV, OELCV, SLCCV, SLCV, TbCSV, ToLCBV, and ToLCNDV. The overall rate of virus infection was 26.4%, and BYVMV and ToLCNDV were the most frequently detected in the B. tabaci vector. Virus infection rates for Asia I, Asia II 1, Asia II 5, and Asia II 10 were 22.4% (15/67), 35% (7/20), 27.3% (6/22), and 100% (1/1), respectively. Each cryptic species infected multiple virus species, but SLCCV, TbCSV, and BGYVV were each only detected in, Asia I, Asia II 1, and Asia II 5, respectively. This study demonstrates the geographic distribution of various begomoviruses in Bangladesh and their relationships with cryptic species of B. tabaci.

11.
Acta Trop ; 202: 105261, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31705843

ABSTRACT

Bluetongue is a serious vector-borne viral disease that infects wild and domestic ruminants. The causative virus is transmitted by midges of the genus Culicoides, which consists of at least 1350 species worldwide. Since 1998, bluetongue disease has spread to Europe and northern Africa, including Algeria. To better understand the distribution of Culicoides species in Algeria, adult midges were collected from 17 different regions in Algeria from 2009 to 2015. At first, 492 specimens were grouped into 52 batches by wing patterns and geographic area of Algeria. Analysis of 60 nucleotide sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene showed that the presence of 14 species including five unknown species, which were belonged to seven distinct subgenera. At least five species (C. imicola, C. obsoletus, C. puncticollis, C. kingi, and C. newsteadi) were discussed as potential vectors of bluetongue virus (BTV). The present study provides important insights into the genetic diversity of Culicoides and the potential spread of BTV in Algeria.


Subject(s)
Ceratopogonidae/genetics , Algeria , Animals , Bluetongue/transmission , Ceratopogonidae/classification , Genetic Variation , Insect Vectors/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...